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AN EXPERIMENTAL STUDY OF THE POOL HEATING OF LIQUID HYDROGEN

IN TEE SUBCRITICAL AND SUPERCRITICAL PRESSURE

_._.,,j REGIMES OVER A RANGE OF ACCELERATIONS

by Robert W. Graham, Robert C. Hendrick_, and Robert C. Ehlers

! _"-I Lewis Research Center

ABSTRACT _0_ _" :"

Pool heating of liquid hydrogen in the subcritlcal and supercritical

pressure states has been investigated at earth gravity and multigravltles.

,9
Acceleration does influence the incipience of nucleate boiling but does ,_

not affect established nucleate boiling. The film boiling heat transfer ._

is influenced by multigravlty accelerations. ,ii

A boiling.like mechanism was evident for hydrogen in the supercritical it

and near-crltical state. Acceleration magnitude influenced the heat ._

transfer in this fluid regime.

INTRODUCTION

Pool heating of cryogenic fluids, and particularly liquid hydrogen,

can be encountered in numerous space-vehicle-design applications. Such a ,i_j

!1vehicle may experience a variety of body accelerations which can range

from zero gravity to lO or more g's. Consequently, information on the

manner in which the local gravity influences heat transfer is needed. In

addition, the observed gravitational effects on the heat transfer of any

,._ fluid are useful in evaluating conceptual models of such processes as

' L''i nucleate and film boiling,
}

_'I_ A limited amount of heat-trans1'er data for the pool heating of liqui_

i°*_! hydrogen appears in the literature (refs. 1 to _). The pool _oillng of

i x-s .o 9
o

• _ _ ,;
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many fluids other than hydrogen is extensively reported in the ±Iterature.
7

> Several well-known correlations for predicting pool-boillng heat-transfer

rates have been proffered (ref. 4). It cannot be assumed a priori that

these correlations can be applied to boiling 1_drogen.

._ In the ooiling regime,, several investigations have been made concern-

_ Ing the effect of gravity on the mechanism of boiling. Siegel and Usiskln

(ref. 5) conducted an experiment with water at zero or near-zero gravity.

Similar experiments with hydrogen and nitrogen were reported in refer-

ences l, 6, and 7 for the low-gravlty condition. Several investigators

have studied boiling and burnout in multlgravity conditions (refs. 8 to
9

12), but none of these experiments have been with hydrogen.

_ The object of the experiments in this raport was to assess the

_:_ effects of multigravity on both the boiling and supercritical heating of

i liquid hydrogen. Measurements comprised: (1) e_ergy into the heater,

(2) heater surface temperature, and (3) bulk hydrogeo__temperatures and

_! pressures. High-speed photographs including shadowgraphs of the fluid

! during heating were taken. The hlgh-speed movies were valuable in gain-

ing insighb into the mechanisms of heat transport.

APPARATUS AND PROCEDURE

App_na_us

Figure l(a) is a sketch of the 4-foot-arm centrifuge used to impose

the varying multigravlty acceleration forces on the fluid. The centri-

fuge was rotated by an air turbine, and the speed was measured by using

_ an electronic frequency counter. The mounting of the tank and hlgh-speed

motlon-picture camera at the end of the arm is schematically shown in fig-

ure l(a).
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The tm_k and the heating element are shown in figure l(b). The tank

volume was approximately 2 quarts and was _qulpped with observation and

illumination windows for the photography. _e tank was mounted on a free- _

rotating trunnion arrangement (see fig. l(a)) that automatically enabled

the tank-heater assembly to be oriented so that the resolved acceleration

I. vector (gravity plus centrifugal) was perpendicular to the heater _urface.

' The tank was constructed as a Dewar in order to contain the liquid
hydrogen. The inner tank that actually held the hydrogen was insulated

with spaced laminations of aluminum foil. A vacuum _as continuously main- ._.

talned in the void regions between the layers of foil. As is show_ in .',
iI

flgare l(a), the vacuum pump rotated with the arm to maintain this vacuum. _

Provision was made for pressurizing the Dewar and controlling this pres-

sure to some preset value. _bleed line, as well as a pressurizing line, _,_

was required to make this possible. The bleed llne was connected to an

atmospheric vent that rotated with the apparatus. A strain-gage trans-

ducer was used to measure the tank pressure.

Heater _I

A cross-sectional view of the heater block and its associated surface ._:

temperature instrumentation is shown in figure l(c). The heating ribbon

was a thin Chromel-A ribbon mounted on a bakellte block. The ribbon was

tenslon-mounted with springs on each end and was cemented to the surface

of the bakelite block. _ze purpose of the tension mounted was to prevent

buckling of the strip when it expanded during heating. By virtue of this

mounting, the ribbon heated the fluid from one side only. The cross-

sectional area of the ribbon was very uniform from end to end; thus it
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was assumed that a uniform heat flux was deve!ape_r_the entire heater

length by resistive heating.

Considerable difficulty was incurred in developing a thermocouple

system that would measu,ve the surface temperature of the heater reliably.

The hydrogen pool was used for the cold junction. The small temperature

difference in nucleate boiling made precise measurement difficult. A

thermocouple seemed to be the only instrument that would measure the

local surface temperature cJ a very small contact area. Chromel-

constantan was chosen as the thermocouple material because it provides

approximately 50 percent greater electromotive force output than does

copper constantan, and the Junction is easy to spot weld.

As is shown in figure l(c), three thermocouples were spotted on the

back surface_of the heater ribbon; this was done to minimize any surface

changes provoked by the couple mountings. An appreciable error in actual

surface temperature would be incurred, but this was preferred to any alter-

ations in surface conditions that could drastically affect the boili_

characteri_tics of the surface. To minimize the conduction of heat away

from the thermocouple Junction through the leads, i/2-mil (0.0005 in. )

thermocouple wire was used. T_is small size wire aggravated the installa-

tion problem. As mentioned earlier, the heater thermocouples indicated a

temperature difference between the metal temperature and the hydrogen

pool; the pool temperature was measured with two carbon resistor probes.

The thermocouple output was then amplified by _'_f_rential amplifiers

isolated from common ground, hundredfold for the nucleate-boiling study

and sevenfold for the film-boiling portions.

" " ' ........ • . ./ ' . ,.... _ ._z....: .... _,....._ ........-- ,i _ ......................... ....... _......._ql
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Before this thermocouple system (thermocouple_, cold Junctions, and

amplifiers) was evolved and adopted, there were many hours of preliminary

running to check out the system. It was anticipated that the sllp rings

might introduce some error into the temperature r.Leasurements,so tests were

run in which the sllp rings were by-passed, and these results were compared

with spinning and nonspinning runs involving the slip rings. No slip-ring

effect was noted. In fact, the entire instrumentation was evaluated in

this process to avoid slip-ring errors. The remaining instrumentation,

not mentioned thus far, include voltage taps and current leads on the

heatez, ribbon for heater electrical power and a counter to indicate the _.

rotational speed of the centrifuge. )Y_

Recording Devices
i

A digital potentiometer or an oscillograph were employed in gather- _

ing the data reported herein. All of the basic measurements including !!

iL I
__Q| pressure and temperature, as well as electrical energy, were transduced

: to electrical outputs. For most of the running, the digital potentiometer _

i_ i_!I recorded these outputs. Some of the runs, however, were recorded on an ._;

! i:;_ oscillograph, principally those involving high driving temperatures as

encountered in film boiling and heating of supercritical hydrogen, ilI_i

Precision of Measurement :i
i/;

i }I_ -'

i precision; the digital potentiometer is rated as _ I/4-percent instru-

_-i__ merit. The bulk temperatures and pressures of the saturated hydrogen

I'_I_) pool were compared with NBS data for para-hydrogen. For some of these ._.oJl

j
1964018168-TSA10
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i'1 tlon from the N_ data was observed. The maximum error in bulk tempera-

_I ture was approximately 2 per_:ent (0.5° to I° H absolute error. ) Some of

!_i_ this error might be attributed to the presence of superheated liquid as the

i__-_-_'_i!I result of heat.leak through the tank walls, windows, _nd instruments leads.

_Ji_Ii It is estimated that the overall accuracy of measurement _'alls some-

i where between 1 and 2 percent° This i_epresents an Integrated judgment

of the pre_ision of the data-taklng system..

i PROCEDUPE

In general, the procedure was to study first the hlgh-speed motion

pictures and heat-transfer dat_ obtained from a heater ribbon in ordinary

gravity. Then the multlgravity experimentation was progr_amed, making

sure that comparable thermodynamic conditions to those experienced at

1 g were attained. Generally, a multlgravity and a 1-g experiment

were run consecutively for the most meaningful comparison.

As the reader might surmise, operation of the facility at multi-

gravity conditions was appreciably more difficult than at ordinary gravity.

It was much more difficult to hold thermodynamic conditions steady in the
$

Dewar.

Generally, the procedure for getting the multigravity data was

identical for the subcritlcal and supercritical pressure states. The

centrifuge rotational speed was set at a predetermined value and the heat

flu_ to the heater ribbon was varied over a number of power increments.

.....i.,. The experimental conditions covered included

. _ - u

1964018168-TSA11
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Heat flux, Btu/(sec)(sq in.) ................. up to 20
i',I..

._! The accelerations studied varied from i g to approximately i0 g's.

! J , '

" :if Comparison of Heating Curves for Subcrltical

. and Supercritlcal Pre_.ures
_._":._ The multlgravi_y effect_ can be assessed by comparing this level with

L. ;_._! comparable l-g data. Unless otherwise specified, all of the local-heat-

,.-.... transfer data reported herein are for t1_e center station of the heater

i_i block. This selection would tend to eliminate end effects that could In-

fluenc_ the t_o extreme stations•

F_gure 2 sho_s the heating curves for _vdrogen_obtalned with the

heater block shown in figure l(c) in both the subcrltlcal and supercrltlcal

pressure regimes in an Earth-gravlty environment (gravity vector normal

_.._ to the heater surface)• These are the temperature differences recorded

-" I
.__ by the center thermocouple located on the bottom surface of the heater

u_l strip° Because of the finite thickness of the heater, a temperature

I gradient would exist acros_ the thickness of the strip° The.._.ashed

curve in the nucleate portion (A) of figure 2 is an eatimated correction

based on a one-dimenblonal conduc_cion calculation° The correction is

• significant at the upper end of the nucleate-boiling c_rveo The correction

may not be accurate, ho_ever, because the thermal conductivity for

-i!i_ilj! Chromel-A is not known at cryogenic temperatures and heat leak into the

L

_. bakelite block or through the thermocoupl_ leads was not considered.

] 9640] 8] 68-TSA]:3
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In general, figure 2 looks quite similar to comparab!_ plots for

other fluids such as Freon (ref. 13) and water (ref. 14). There are a

number of iaLeresting features in this figure. First, it is obvious that

there Is a very steep portion of the heating curves (labeled A) associated

......_-":" with nucleate boiling. The level of the temperature difference associated

' -_ =_ with nucleate boiling ks a function of pressure; the AT decreases with

_il)_ ' ,i increasing pressure. Further, there is a film-boiling region (labeled B)

_ _ _ that extends over a wide range of heat fluxes and driving temperatures.

! No physical burnout conditions were encountered over the range presented

._i-__:___ in this figure. At the higher dri_Ing temperatures, the film-boiling

_ __
_-_ii_ and supercritical data tend to merge into one band. Apparently, the

_ mechanisms for the heat transport are similar for both fluid states.

Associated with the_development of the boiling curves was an ob-
c

_ servable hysteresis phenomenon that influenced the data _.ointsin transi-

tion from nuclea_:e to film boiling. The hysteresis effect did enable

mo_e data to be gathered in the transition region between nucleate and

film boiling. When the heat flux was •being increased during the test

. pr.ocedure, a discontinuous jump from the nucleate to _ilm-boiling region

took place. This is n,:,tto imply that a true discontinuity in the boil-

,ii_!_,.S ing curve exists. The jump occurred because heat flux and not wall tem-

i_ _'_i'i,_/__! perature was the controlled variable. By gradually decreasing heat flux,

data points within the gap could be obtained, and many of these appear

in this figure.

A discussion of the nucleate portion of the cuTve shows that onlty

a small dri_..ng temperature is required for the nucleate boiling o£

1964018168-TSC01
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• hydrogen. The magnitude is comparable to what other investigators have

found (refs, i to 3). For saturated water, the driving temperature in

nucleate boll£ng i_ one order of magnitude higher. The pressure level:

-° _:_I or proximity to critical pressure, has a pronounced effect on the nucleate

_ii-li_",_ portion of the boiling curve. As the pressure level approaches the criti-cal value (from the low side) the maximum heat flux associated with the

nucleate-boillng curve reduces, until at or near critical pressuro there

is no steep-sloped nucleate curve. Since the heat of'vaporization of

hydrogen diminishes wi_h increasing pressure, it may be postulated tbat

the enhanced heat-transfer rate in the nucleate regime is related to the

evaporation process. There is still a running argument as to whether

evaporation or the stirring action of bubbles control the enhancement

of heat transfer in nucleate boiling. These hydrogen data seem to

corroborate recen5 reports (refs. 15 and 16) that emphasize the im-

portance of evaporation.

Effect of Subcoo].ing on E_illng Curve

Although it was difficult to achieve stea<yostate experimental con-

_?_ii:_ ditions with subcooling, some subcooling data in Earth gravity was ob-

:ii!i:i_I rained° The maximum subcooling was of the order of S° Ro Nevertheless,
: !

i!i._:I-- this s_all amount of subcoollng sponsored appreciable changes in the

-- ..... _ nucleate boiling curve as is sho_ in figure _ Such a saift in the
'_

_:_ curve toward higher temperature differences would be expected from

_-_'_! nucleation theory (ref. 17) or fro_ the large amount of subcooled boil-

..:?-._ lug data in the literature for other f]nidso It can be concluded that

_._ the degree of subcooling is very important in control]ing the nucleate-

]964018168-TSC02
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! ..i?i_!/. ' boiling process (particularly incipience) in liquid hydrogen°

_,,_,_.. Multigravity Effects, Nucleate and Ftlm Boiling

"'.:.:.L Figure 4 consists of two plots in which 7-g nucleate-boiling data

.__.._i"'V_'_,' are compared to Earth-gravlty data at two saturation conditions of 52
_,._,_.!,_._,_

i.i;,,¢!, and 90 pounds per square inch absolute. The comparative l-g and 7-g

...._......'_ runs _ere made sequentially and, considerable care was exercised in

.I....:.,_i,. making the thermodynamic conditions similar. Tank pressure and. fluid

_2!:_.,}_I. temperaturewere carefully monitored before data._ere taken.

',,_:i,.,_..__ Actu_lly there are t.hree separate heating curves on each plot in

_i,, figure 4 all of which were generated by incrementally increasing the

:.iI heat flux. The experimental procedure is significant to an interprets- !

tion of the comparative data on these plots. First, th_ Earth-gravity
_':!.!

,ql. data (curve A) were obtained using a freshly filled Dewar. The h_,drogen

) '

Dewar was refilled with fresh fluid and the initial thermodynamiccon-.

__I_ _ _.S !i,_ ditlons were reproluced, then the m_ultlgravity curve (curve B) was gen-

,.,,..:.,:.i_ crated. Finally_ curve C is a multigravity repeat that followed Imme-
_,_-:_9!

-_. , _ -._i_, .':.

_._", _a._ diately after the generation of curve B by using the same hydrogen fi.ll.
:'_<7_ _!'._, _!

__",. :i,_ ".' _. A comparison of curves A and B on each plot shows that there _s

'_" definite movement of the nucleate incipience conditions to a so,me-what

_',_ highe_ • AT, These multigravity curves also show a steeper slope of the

]_I nucleate curve. As is seen in the figures, curve B generally crosses

_:' i._._ii_; the l-g curve and thereafter remains somewhat higher than the 1-g

• I::_ curve. It does appear that the upper limit of nucleate boiling is at a

!_'_ somewhat higher heat flux for the mu]tigravlty case..',_::".-....!_i An immediate repetition of the multigravlty curve leads to a dl.f'-

!o___j/,]._ _{_i},_ ferent curve, particularly at the low heat flux and wt,ere inei_ie_,__e

I _ 4. - _"!t _"

1964018168-TSC03
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,_7'_.'I begins. Perhaps t._.iscan be explained by arguments similar to those

_'_'_-_I proffered in the hysteresis discussiun, in which it was pointed out that

: , '_i the history of the thermal layer influences the boiling mechanism. It

" ,_,_ should be noted t_at curve B was generated with a newly loaded Dewar of

__ hydrogen. No previous thermal heating of the boundary layer had occurred;

i_?_'_ thus the boiling data represent ccndltlons with a virgin thermal layer.

,",_"_ In contrast, the data for curve C were taken immediately after those of

°ii:;I
_._. curve B, and it is probable that s_me residue of the previous thermal

_f_I layer remained, as well as the possibility of .=omevapor nuclei. Also,

...._ some heat could have been stored in the bakelite block. Thus, it did

not take much driving temperature to initiate nucleation° It is inter-

esting to observe that curves B and C become one curve at the higher

heat fluxes.

It can be concluded from figure 4 that a multigravi_y environment !

can shift the incipience point of nucleate boiling, but once the boiling
!L

has been established the body-force environment does not greatly affect
!

the boiling curve. (There is little spread in the AT data for both ili_

l-g and multigravlty data. ) This has been confirmed in figure 5, which

includes 3-g and lO-g data° i_

i!
It has also been learned that the boundary-layer history marked±y _i

influences the boiling curve in the vicinity of the incipience point.

=_ Thus, it may be concluded that the history and condition of the thermal

/,_I layer is as significant as the bo_y-force effect in controlling nucleate-

i_i_I boiling incipiem_e. This observation is consonant with what has been

observed with subcooling and the hysteresls-_phenoraenoneffects.)

1964018168-TSC04



. In figures 4 and 5, the upper end of the nucleate curve occurs at a

,_;_!,!.:.... higher heat flux for thL multlgravity data than for the l-g data. This

indicates that free convection is becoming important in thir region of

the boiling curve.

!i !,! A much more definite body-force effect on film boilin£ was noted.

i_ii .:. Figure 6 shows a comparison of l-g and 7-g data in the f_Im-boiling

•_ region. The associated nucleate data are shown fo._ comparative purposes.

_'i The 7-g data are consistently about 12 to 15 percent above the 1-g data.

In obtaining these data, both increasing and decr_aslng heat flux experi-

mental procedures were used. Regardless of which procedure _as used, the

data are reproducible. Decreasing the heat flux did enable some transi-

_ tion points to be obtained that could not be obtained otherwise. A

hysteresis phenomenon In_tha_transition region was observed.

The principle observation to be made from figure 6 is that there is........

_: a definite gravity effect on the film-boiling region and this wa_ not

:._ observed in the established nucleate region.

! Multlgravity Effects on 8upercritical Heating

i Fixate 7 is a comparison of l-g and 7-g heat-transfer data for

9upercritical pressures. The data include two pressurc-_, 215 arid

260 pounds per square inch absolute. Regardless of the pressure level,

the data can be grouped into two distinct bands, Earth gravity and

multigravlty, with the latter being above the former. Assuming some

sort of free-conw_ctlon correlation involving a Rayleigh number, this

trend would be expected. Furthermore, in free-convection correlations,

the exponent on the Rayleigh number may range anywhere from appro× Lmately

1964018168-TSC05
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iii!
_)i_i_il_ O.25 to O.35. Consequently, the ratio of the multlgravity heat flux to the

-i_i_i_ Earth-gravlty heat flux should be

%g_ (n)O. Stoo. s (1)

where q is the heat flux_ and n is the number of g's imposed. The

ratio of the heat fluxes from figure 7 appears to be about 1.65. thus the

exponent of n would be approximately O.26. This is within the range of

values cited for free cenvectlcn. 'lhus, it may be concluded that the super-
.... I

" _ critical heating of _hydrogen in mult_gravity may be predicted from a stan-

_ii_ dard free-convection correlation by using 1-g data as a reference situa-

tion.

Supercritlcal Heating Mechanism

It has been noted already fro_ figure 2 that the supercritical heating

data fall along a fairly linear band (on a log-log plot of q against AT).

i_ This is similar to what would be observed for the free convection of any
! fluid. No hysteresis or apparent dependence on experimental procedural

_ technique was encountered in getting data that would group within a narrow

band.

Visual studies of the supercritical regime showed that a phenomenon

somewhat resembling columnar boiling was at work. Of course, bubbles were

_.. not presen'_ but sizable agglomerations of low-density molecules were rising

_. ;"_ " through a denser and colder fluid. This gave a boillng-like appearance to

;_iiii the heating process.

• ii This boiling-like mechanism for a supercritical fluid has been ob-

_'_I served by Griffith and Sabersky (ref. 15) in hlgh-speed photographs of

-_,._.

] 9640] 8] 68-TSC06
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Freon. Also, the possibility of such a mechanism was postulated in a pre-

pared discussion by Goldmann in reference 18. The mechanism was postulated

to explain the enhanced heat transfer near the critical point.

SUMMARY OF RESULTS AND CONCLUSIONS
i

• i. The heating curves (heat flux against temperature potential) for
ii

liquid hydrogen in the subcritical and supercritieal pressure states are

similar to curves for other fluids_ In the subcritical state, nucleate

and film-boiling regions are clearly indicated. The upper limit of the

'_ nucleate curve is pressure dependent. The film-boiling and supercrltical

_ heating curves tend toward coincidence at high heat fluxes.

it 2. The nucleate portion of the subcritlcal heating curve is sensi-
J}

tive to subcooling and hysteresis effects. Wlth the exception of bubble

incipience, very little influence of multigravlty effects was noted on
_C

the curve. There probably is some tenRency for the upper limit of

nucleate-boiling heat flux to shift upward as gravity is increased.

_. No hysteresis effects were noted in the established film-boiling

region of the boiling curve_ A definite hysteresis phenomenon was noted.,

_! however, in the transition region between nucleate and film boiling° In

fact, certain operating points could only be achieved by =_pcoacbing fzg,m

a high to a lowheat flux. In the established film-boil_ng region, chang-

ing the gravity environment from 1 to 7 g's produced a 12- to 15-percent

increase in the heat flux.

4. It is also concluded that the mechanisms of heat transport for

established film boiling and supercrltical heating are similar. The

high-speed photographic evidence of rising columns of low-denslty

1964018168-TSC07
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) is i
? 1
! _' agglomerate_ and the heat-transfer data support this conclusion. This

similarity &Iso supports the view that free convection is the primar_

mechanism in the film-boiling region. The gravitational dependence of

the supercritical data followed the Rayleigh number (free convection)

prediction.
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